Package: sesem 1.0.2

sesem: Spatially Explicit Structural Equation Modeling

Structural equation modeling is a powerful statistical approach for the testing of networks of direct and indirect theoretical causal relationships in complex data sets with inter-correlated dependent and independent variables. Here we implement a simple method for spatially explicit structural equation modeling based on the analysis of variance co-variance matrices calculated across a range of lag distances. This method provides readily interpreted plots of the change in path coefficients across scale.

Authors:Eric Lamb [aut, cre], Kerrie Mengersen [aut], Katherine Stewart [aut], Udayanga Attanayake [aut], Steven Siciliano [aut]

sesem_1.0.2.tar.gz
sesem_1.0.2.zip(r-4.5)sesem_1.0.2.zip(r-4.4)sesem_1.0.2.zip(r-4.3)
sesem_1.0.2.tgz(r-4.4-any)sesem_1.0.2.tgz(r-4.3-any)
sesem_1.0.2.tar.gz(r-4.5-noble)sesem_1.0.2.tar.gz(r-4.4-noble)
sesem_1.0.2.tgz(r-4.4-emscripten)sesem_1.0.2.tgz(r-4.3-emscripten)
sesem.pdf |sesem.html
sesem/json (API)
NEWS

# Install 'sesem' in R:
install.packages('sesem', repos = c('https://eric-lamb.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.58 score 2 stars 19 scripts 457 downloads 12 exports 15 dependencies

Last updated 8 years agofrom:214aa199e6. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-winNOTENov 23 2024
R-4.5-linuxNOTENov 23 2024
R-4.4-winOKNov 23 2024
R-4.4-macOKNov 23 2024
R-4.3-winOKNov 23 2024
R-4.3-macOKNov 23 2024

Exports:avg.modindicesbin.resultsbin.rsquarecalc.distgam.pathmake.binmake.covarmodelsummaryplotbinplotmodelfitplotpathrunModels

Dependencies:bitopscaToolsgplotsgtoolsKernSmoothlatticelavaanMASSMatrixmgcvmnormtnlmenumDerivpbivnormquadprog